Regional analgesia in total hip arthroplasty: Evidence and recommendations

Background

- The PROSPECT initiative provides evidence-based and procedure-specific recommendations for postoperative pain management, formulated through an international collaboration of surgeons and anaesthesiologists.¹
- Total hip arthroplasty (THA) is performed on high-risk surgical populations; typically patients are elderly and have significant co-morbidities – therefore, pain control should be balanced to optimise functional recovery and reduce postoperative morbidity and mortality.
- Regional analgesic techniques are commonly used in THA, but each method has benefits and drawbacks.
- PROSPECT presents evidence and recommendations for regional analgesia in total hip arthroplasty.

Methods

- A systematic review of the literature was performed according to the protocol of the Cochrane collaboration. MEDLINE and EmBASE were searched from 1966–July 2004 using predefined search terms.
- Studies included in the review were randomised trials of regional techniques in THA.
- All included studies were required to report pain scores using a visual analogue scale (VAS) or verbal rating scale (VRS). All pain scores were converted to VAS 1-100 mm. Other outcomes were recorded where available. Results are reported as significant where p<0.05; n = number of studies.
- Supplementary information from similar orthopaedic procedures and clinical practice was also assessed
- Recommendations for regional analgesia in THA, based on the evidence, were formulated by consensus of the PROSPECT working group.

Results

 A total of 32 studies examined regional analgesia in THA: epidural analgesia (12); spinal analgesia (14); peripheral nerve block (4). Two studies examined spinal analgesia versus epidural or peripheral nerve block analgesia.

Epidural analgesia, n=12 (Table 1)

- Continuous epidural (local anaesthetic [LA] ± morphine) decreased pain scores on movement and at rest compared with general anaesthetic (GA) + IV morphine on demand.²
- Bolus epidural pethidine was superior to bolus IM pethidine for reducing pain scores ≤ 1 h postoperatively.⁴
- Bolus or infused epidural clonidine was effective in reducing pain scores^{5, 6} and supplementary analgesic use^{5,7} and for extending the time to first analgesic request.57

Table 1. Effects of different epidural regimens on postoperative pain scores and use of supplementary analgesics

	Compariso	Postoperative effects versus control				
1	Epidural	Control	Pain scores	Analgesic use		
	Continuous LA ± morphine	GA + systemic morphine	2, 3	² \leftrightarrow		
	Bolus pethidine	Bolus IM pethidine	4 📕	4 👄		
	Bolus or infused clonidine (± LA)	Bolus or infused epidural LA alone	5 7	5, 7 📕		
	Bolus plus infused clonidine, or bolus clonidine + bolus and infused morphine	Bolus plus infused epidural morphine alone	۵ 🖡	۰ 🖡		
	Bolus bupivacaine + fentanyl l	Bolus epidural bupivacaine + morphi	ne 22	22		
	Bolus ropivacaine + fentanyl	Bolus epidural fentanyl alone	23			
	Infusion bupivacaine versus ropivacaine versus levobupi	vacaine	24, 25	24, 25		
	Infusion sufentanil (0.5 µg/r versus 0.75 µg/ml versus 1.0 µg/ml) + ropivacaine 0	nl .1%	26	26		
	Catheter insertion: tip of Tuohy needle 45° to the operative side	Tip of Tuohy needle 90º cephalad	27	27 🖡		

Table 2. Effects of different spinal regir ens on postope nentary analgesics

Compo	ırison	Pos	toperative ef versus contro	fects ol
Spinal	Control	Pain scores	Analgesic use	Side- effects
Opioid + LA	Spinal LA alone	8-13 📕	9.13	PONV ^{9, 11-13}
Continuous bupivacaine	Single-shot spinal bupivacaine anaesthesia + IV PCA morphine	14 📕	14 🖡	↑ PONV ¹⁴
PCA bupivacaine	On-demand spinal bupivacaine	15 📕	15 📕	
Bolus I morphine	Psoas compartment blo using ropivacaine	ock 20 📕	20 📕	Urinary retention ²⁰
Continuous bupivacaine	Continuous epidural bupivacaine	21 📕	21	
Bolus nalbuphine, morphine-6-glucuroni diamorphine, and clonidine	Spinal bolus de, morphine	28, 29, 30, 9	28, 30 ↔ 29, 9	
Clonidine + LA and/or opioid	Spinal LA and/ or opioid alone	10, 31 9		
Levobupivacaine	Spinal bupivacaine	32	32	
Fentanyl	Spinal sufentanil	33 \leftrightarrow	33	

Spinal analgesia, n=14 (Table 2)

- Spinal LA + opioid decreased pain scores during 0–8 h (Figure 1), and 8-16 h, but not 16-32 h, decreased opioid use (Figure 2), and extended the time to first analgesic request, compared with LA alone, but may increase the incidence of PONV (5 studies, 7 arms OR 1.85 [1.15, 2.99], p=0.01).⁸⁻¹³
- Continuous spinal LA was superior to single shot spinal anaesthesia + IV PCA morphine for reducing pain scores and the incidence of PONV.¹⁴
- Bupivacaine administered by PCA via a spinal catheter significantly reduced pain scores and supplementary analgesic use compared with on-demand spinal bupivacaine.

Peripheral nerve block, n=4 (Table 3)

- Bolus psoas compartment block + GA reduced intra-operative fentanyl, pain scores,^{16, 17} postoperative morphine use¹⁰ ′ and blood loss¹⁶ compared with GA alone.
- Psoas compartment block decreased pain scores and initial opioid use compared with femoral nerve block.¹
- Bolus femoral nerve block + GA reduced time to first analgesic request in one study, $^{\rm 17}$ but had no significant effect on pain scores or opioid use compared with GA alone. $^{\rm 17,\,18}$
- Femoral nerve block delivered by PCA provided no benefit over delivery by continuous infusion for reducing postoperative pain scores.

Spinal analgesia versus psoas compartment block or epidural analgesia (n=2)

- Bolus spinal morphine reduced pain scores, and opioid use, but increased urinary retention by 3-fold compared with bolus psoas compartment block.²⁰
- Continuous spinal morphine reduced pain scores at rest and on movement, supplementary analgesic use and the incidence of PONV compared with epidural morphine.²

Table 3. Effects of different peripheral nerve block regimens on postop pain scores and use of supplementary analgesics.

Comparison	Postoperative effects versus control			
Nerve block	Control	Pain scores	Analgesic use	
Bolus psoas compartment block	Placebo	16, 17	16, 17	
Bolus psoas compartment block	Femoral nerve block	17 📕	17 📕	
Bolus femoral nerve block	Placebo	17, 18	17, 18	
PCA femoral nerve block	Continuous emoral nerve bloc	¹⁹ 👄	19 \leftrightarrow	

procedure specific postoperative pain management

¹Barrie Fischer and ²Christian Simanski, on behalf of the PROSPECT (PROcedure-SPECific postoperative pain managemenT) Working Group

³Department of Anaesthesia, Alexandra Hospital, Redditch, Worcestershire, UK; ³Department of Trauma and Orthopaedic Surgery Cologne-Merheim, University of Witten/Herdecke, Witten, Germany

Study or sub-category	n	LA + opoid Mean (SD)	n	LA Mean (SD)	WM (rand 95%	D om) Weight CI %	WMD (random) 95% Cl
Fogarty DJ 1993 1	30	1.80 (5.53)	30	27.30 (23.02)		11.86	-25.50 (-33.97, -17.03)
Maligan KR 1993	30	7.60 (18.58)	30	27.20 (23.02)		8.84	-19.60 (-30.19, -9.01)
Murphy PM	15	5.00 (1.00)	15	20.00 (5.00)		26.43	-15.00 (-17.58, -12.42)
Murphy PM b	15	10.00 (1.00)	15	20.00 (5.00)		26.43	-10.00 (-12.58, -7.42)
Murphy PM c	15	9.00 (1.00)	15	20.00 (5.00)		26.43	-11.00 (-13.58, -8.42)
Total (95% C.I.)	105		105		•	100.00	-14.27 (-18.01, -10.53)
Test for heterogeneit Test for overall effect	y: Chi ² = : Z=7.48	19.28, df=4 (p=0 (p<0.00001)	.0007),	I ² =79.3% –100 Favours tre	–50 0 atment	50 100 Favours control	

ure 1. Effects of spinal LA + opioid versus spinal LA on VAS pain scores

Study or	_	LA + opoid Mean		LA Mean	WMD (random) Weight	WMD (random)
sub-category		(3D)		(30)	93% CI	76	95% CI
Fogarty DJ 1993 1	30	5.50 (6.70)	30	31.00 (18.70)		14.77	-25.50 (-32.61, -18.39
Maligan KR 1993	30	12.00 (11.40)	30	31.00 (18.7)	-	13.69	-19.00 (-26.84, -11.16
Murphy PM	15	8.00 (2.40)	15	12.50 (2.45)		23.75	-4.50 (-6.24, -2.76)
Murphy PM b	15	7.80 (1.80)	15	12.50 (2.45)		23.94	-4.70 (-6.24, -3.16)
Murphy PM c	15	2.50 (1.80)	15	12.50 (2.45)		23.94	-10.00 (-11.54, -8.46
Total (95% C.I.)	105		105		•	100.00	-10.94 (-15.25, -6.63

Figure 2. Effects of spinal LA + opioid versus spinal LA on morphine use, mg.

Conclusions

- Regional techniques have superior analgesic efficacy and decrease postoperative morbidity compared with systemic regimens
- Peripheral neural blocks provided effective analgesia, and are associated with fewer adverse effects than neuraxial or parenteral analgesia.
- On balance of risks and benefits, peripheral neural blocks are recommended for routine use with general anaesthesia in THA, to be delivered either as a continuous infusion, or by PCA or on-demand.
- Spinal analgesia (LA + opioid) may also be used, because it provided effective pain relief and reduction of analgesic use, but urinary retention should be monitored.
- Spinal analgesia provided greater pain relief, and produces a more profound nerve block, than epidural analgesia
- Epidural analgesia provides a less favourable risk/benefit profile in most patients, but may be considered for patients at high risk of cardiopulmonary morbidities.
- All regional techniques for anaesthesia/analgesia have a recognised failure rate, which must be considered when planning pain relief for THA.
- Further comparative studies of regional techniques are warranted, to assess pain, mobility and hospital stay.

References

- Kehlet H, et al. Eur J Anaesthesiol 2003; **20(Suppl 30)**; 6. Moiniche S, et al. Acta Anaesthesiol Scand 1994; **38(4)**: 328–35. Wulf H, et al. Anesth Analg 1999; **89(1)**: 111–6.
- Gustafsson LL, et al. Eur J Clin Pharmacol 1986; **29(5)**: 529–34. Carabine UA, et al. Eur J Anaesth 1992; **68(2)**: 132–5. Carabine UA, et al. Br J Anaesth 1992; **68(4)**: 338–43.

- Killigan KR, et al. Anesth Analg 2000; 91(2): 393–7.
 Fernandez-Galinski D, et al. Anesth Analg 1996; 83: 537–41
 Fogarty DJ, et al. Br J Anaesth 1993; 71(5): 661–4.
- Grace D, et al. Anesth Anala 1995; 80(1): 86-91.
- Grace D, et al. Br J Anaesth 1994; **73**(5): 628–33. Milligan KR and DJ Fogarty, Reg Anesth 1993; **18(2)**: 114–7. Murphy PM, et al. Anesth Analg 2003; **97(6)**: 1709–15.
- Maurer K, et al. Acta Anaesthesiol Scand 2003; 47(7): 878-83
- 1.5
- Rundshagen I, et al. Reg Anesth 1997; **22**(2): 150–6. Stevens RD, et al. Anesthesiology 2000; **93**(1): 115–21. Biboulet P, et al. Reg Anesth Pain Med 2004; **29**(2): 102–9. Fournier R, et al. Can J Anaesth 1998; **45**(1): 34–8.

- 19 Singelyn FJ, et al. Anesth Analg 2001; 92(2): 455-9 20. Souron V, et al. Can J Anaesth 2003; 50(6): 574-9
- 21 Mollmann M, et al. Eur J Anaesthesiol 1999; 16(7): 454–61.
- Molinidin M, et al. Car J Andeshresto 1977, 10(7), 434-01.
 Berti M et al. Can J Anaesth 1998; 45(6): 545-50.
 Kostamovara PA, et al. Acta Anaesthesiol Scand 2001. 45(4): 489-94.
 Bertini L, et al. Acta Anaesthesiol Scand 2001; 45(6): 782-5.
- 25. Casati A. et al. J Clin Anesth 2003: 15(2): 126-31
- Cason A, et al. J Clin Anestin 2003; 15(2): 126-31.
 Kampe S, et al. Can J Anaesth 2003; 50(6): 580-5.
 Borghi B, et al. Anesth Analg 2004; 98(5): 1473-8.
 Fournier R, et al. Acta Ancesthesiol Scand 2000; 44(
 Grace D, et al. Anesth Analg 1996; 83(5): 1055-9.
- nd 2000; **44(8)**: 940-5
- 30. Fogarty DJ, et al. J R Soc Med 1995; 88(2): 70-2.
- 31
- Fournier R, et al. Br J Anaesth 2002; **99**(4): 562-6. Glaser C, et al. Anesth Analg 2002; **94(1)**: 194–8, table Fournier R, et al. Anesth Analg 2000; **90(4)**: 918–22. 32. 33.