Surgical techniques in laparoscopic cholecystectomy: effect on postoperative pain

procedure specific postoperative pain management

Edmund Neugebauer¹ and Rory McCloy² on behalf of the PROSPECT (PROcedure-SPECific postoperative pain managemenT) Working Group

¹Professor, Biochemical and Experimental Division, Medical Faculty, University of Cologne, Germany, "Senior Lecturer in Surgery, University Department of Surgery, Manchester Royal Infirmary, Manchester, UK

Background

- PROSPECT is a new initiative in the management of postoperative pain, which provides procedure-specific and evidence-based recommendations formulated by an international working group of expert surgeons and
- Laparoscopic cholecystectomy has become the gold standard for the treatment of symptomatic gallstones, and different operative techniques have been developed to improve the safety and effectiveness of this procedure.
- In this systematic review, PROSPECT has examined the postoperative analgesic effects of the various operative techniques that are used in laparoscopic cholecystectomy.

Methods

- A systematic review of the literature was performed according to the protocol of the Cochrane collaboration.1 MEDLINE and EmBASE were searched from 1966–June 2003 using predefined search terms. Reference lists of identified studies were also searched for further references.
- Study inclusion criteria:
 - randomised clinical trials of operative techniques in laparoscopic cholecystectomy
 - pain scores measured using a visual analogue scale (VAS) or verbal rating scale (VRS) (converted to VAS 1-10 cm)
- Where possible, meta-analyses were conducted on mean differences in postoperative VAS scores, grouped by time postoperatively. Outcomes are reported as weighted mean differences (WMD) with 95% confidence intervals
- Results are reported as significant where p<0.05; n = number of studies.

Results

A total of twenty-four studies compared different operative techniques in laparoscopic cholecystectomy and reported postoperative pain scores. The following operative techniques were evaluated in more than one study and outcomes are summarized in Table 1:

Low pressure versus conventional pressure CO₂ pneumoperitoneum (n=3)

- All of three studies showed that use of low pressure CO₂ pneumoperitoneum was associated with a reduction in pain scores during at least the first 24 h, and a reduction in analgesic use, compared with conventional pressure CO₂ pneumoperitoneum.
- Low pressure CO₂ pneumoperitoneum was also associated with benefits for reducing the duration of hospital stay,4 and improving postoperative physical functioning,² compared

Warmed versus conventional CO2 pneumoperitoneum (n=3)

- Two of three studies showed no significant difference between warmed and conventional CO2 pneumoperitoneum for pain scores or use of supplementary analgesia;5,6 the remaining study showed that warmed CO2 pneumoperitoneum significantly increased pain scores.7
 - quantitative analysis of data from two studies^{5, 6} showed that warmed CO₂ pneumoperitoneum did not significantly reduce pain scores compared with conventional CO₂ pneumoperitoneum (WMD -0.66 cm [-1.64, 0.32], p=0.19) (Figure 1)
- Warmed and conventional CO₂ pneumoperitoneum were similar incidence of PONV in one study.

Study or sub-category	n	Warmed Mean (SD)	n	Conventional Mean (SD)	WMD (fixed) 95% CI	Weight %	WMD (fixed) 95% CI
Puttick 1999	15	4.62 (1.64)	15	5.33 (1.97)	-	56.97	-0.71 (-2.01, 0.59)
Saad 2000	10	2.20 (1.80)	10	2.79 (1.60)	+	43.03	-0.59 (-2.08, 0.90)
Total (95% C.I.)	25		25		•	100.00	-0.66 (-1.64, 0.32)
Test for heteroge df=1 (P=0.91), I ² = Test for overall ef	=0%		9)	–10 - Favours trea	-5 0 5 tment Fav	10 ours control	

Figure 1. Effect of warmed versus conventional CO₂ pneumoperitoneum on VAS pain scores

Table 1. Effects of different operative techniques on postoperative analgesia: Techniques assessed in more than one study

New technique	Standard technique	Analgesic effects of new technique <i>versus</i> standard technique
Low pressure (7.5–9 mmHg) CO ₂ pneumoperitoneum ²⁻⁴	Conventional pressure (12–15 mmHg) CO ₂ pneumoperitoneum	Reduced pain scores during at least the first 24 h and reduction in analgesic use (3/3 studies)
Warmed CO ₂ pneumoperitoneum ^{5, 6, 7}	$\begin{array}{c} \text{Conventional CO}_2 \\ \text{pneumoperitoneum} \end{array}$	No reduction in pain scores or analgesic use (3/3 studies)
Gasless technique ^{8, 9}	CO ₂ pneumoperitoneum	No reduction in pain scores or analgesic use (2/2 studies)
Microlaparoscopic cholecystectomy (smaller port sizes, 2–10 mm) ¹⁰⁻¹² , ¹³ , ¹⁴ , ¹⁵	Conventional laparoscopic cholecystectomy (5 and 10 mm ports)	Reduced pain scores (overall pain, incisional pain or pain on coughing: 5/6 studies) No reduction in analgesic use (5/5 studies)
Radially expanding trocars ^{16, 17}	Conventional trocars	Reduction in epigastric, but not subumbilical pain, during days days 1–3 (1/2 studies)

Table 2. Effects of different operative techniques on postoperative analgesia: Techniques assessed in single studies

New technique	Standard technique	Analgesic effects of new technique versus standard
		technique
N ₂ O pneumoperitoneum ¹⁸	CO ₂ pneumoperitoneum	Reduced pain scores at 1 h and 6 h
Humidified CO ₂ insufflation ¹⁹	Standard CO ₂ insufflation	Reduced pain scores at 6 h, and on days 1, 2, 3 and 10
Helium insufflation ²⁰	Standard CO ₂ insufflation	No reduction in pain scores or supplementary analgesic use
Removal of CO ₂ by suction ²¹	No suction	Reduced pain, especially shoulder tip pain
Trans-umbilical laparoscopic cholecystectomy ²²	Standard laparoscopic cholecystectomy	Reduction in pain scores and supplementary analgesic use during the first 24 h
Day procedure ²³	Overnight stay	No reduction in pain

Gasless technique versus CO, pneumoperitoneum (n=2)

The gasless technique was associated with similar pain scores and analgesic use to the conventional CO₂ pneumoperitoneum technique in two studies.8

Microlaparoscopic cholecystectomy versus conventional laparoscopic cholecystectomy (n=4)

- In three of six studies, microlaparoscopic cholecystectomy was associated with reduced overall pain scores compared with the conventional laparoscopic technique. 10-12 Of the remaining studies, one reported reduced incisional pain on day 1 only13 and another reported a reduction in pain on coughing, following microlaparoscopy, while one study showed no significant benefit compared with conventional
 - quantitative analysis of data from two studies11, 15 showed no significant benefit of microlaparoscopy compared with conventional laparoscopy for reducing pain scores at 16 h (WMD -0.62 cm [-2.19, 0.95], p=0.4) (Figure 2)
- Five of five studies reported that microlaparoscopy did not reduce analgesic use compared with the conventional
- Two of two studies reported a benefit of microlaparoscopy for reducing the duration of hospital stay. 11, 1

Radially expanding trocars versus conventional

One of two studies reported that radially expanding trocars reduced epigastric pain, but not subumbilical pain, during the first 3 days, as well as the incidence of intra-operative port bleeding, postoperative wound complications and mpared with conventional trocars 16 study showed no significant difference in pain scores.12

Study or sub-category	n	Microlaparoscopy Mean (SD)	n	Conventional Mean (SD)	WMD (fixed) 95% CI		WMD (fixed) 95% CI
Alponat 2002	17	1.60 (1.20)	22	1.40 (1.70)	+	48.82	0.20 (-0.71, 1.11)
Cheah 2001	37	2.20 (1.50)	38	3.60 (1.90)	*	51.18	-1.40 (-2.17, -0.63
Total (95% C.I.)	54		60		•	100.00	-0.62 (-2.19, 0.95)
Test for heteroge I ^z =85.5% Test for overall ef		Chi ^z =6.88, df=1 (P=	0.009), –10 - Favours trea		5 10 Favours control	

Figure 2. Effect of microlaparoscopy versus conventional laparoscopy on VAS pain scores at 16 h

Single study results

The postoperative analgesic effects of a number of other operative techniques were compared with those of standard laparoscopic cholecystectomy, but results were only available from single studies (Table 2).

Conclusions

- Low-pressure CO₂ pneumoperitoneum (<10 mmHg) provides analgesic benefits compared with conventional pressure.
- Reducing the size of portal incisions also reduces pain, but the effects may be small and the cost and complexity of this technique should also be considered.
- No analgesic benefit was found for warming the insufflation gas or for a gasless approach.
- Further data is required for conclusions to be made about the analgesic benefits of the following techniques:
 - active removal of CO₂, humidification of CO₂ insufflation gas, N₂O insufflation, helium insufflation, radially expanding trocars, the transumbilical technique and early discharge.

References

- Alderson PGS, Higgins JPT, editors. Cochrane Reviewers' Handbook 4.2.2 [updated December 2003].
- Barczynski M, et al. Surg Endosc 2003; 17(4): 533-8.
- Sarli L, et al. Br J Surg 2000; 87: 1161-5. Wallace DH, et al. Br J Surg 1997; 84: 455-8.
- Puttick MI, et al. Surg Endosc 1999; 13: 572-5.
- Saad S, et al. Surg Endosc 2000; 14: 787-90.
- 8. Larsen JF, et al. J Gastrointest Surg 2001; 5(3): 330-5 9. Vezakis A, et al. Surg Endosc 1999; 13: 890-3
- 10. Bisgaard T, et al. Surg Endosc 2000; 14: 340-4.
- 11. Cheah WK, et al. Br J Surg 2001; 88: 45-7. 12. Leggett PL, et al. Surg Endosc 2000; 14: 32-6.
- 13. Bisgaard T, et al. Surg Endosc 2002; 16: 458–64.
- 14. Schwenk W, et al. Surg Endosc 2000; 14: 345-8.
- 15. Alponat A, et al. World J Surg 2002; 26(12): 1437-40. 16. Lam TYD, et al. J Laparoendosc Adv Surg Tech A 2000; 10(5): 269-73
- 17. Bhovrul S. et al. J Gastrointest Sura 2000: 4: 392-7
- 18. Aitola P, et al. Surg Laparosc Endosc 1998; 8(2): 140-4
- 19. Mouton WG, et al. Surg Endosc 1999; 13: 106-8.
- 20. O'Boyle CJ, et al. Surg Endosc 2002; 16: 620-5.
- 21. Jorgensen, JO, et al. Aust NZ J Surg 1995; 65: 466-9
- 22. Bresadola F, et al. Eur J Surg 1999; 165(1): 29-34. 23. Young J, et al. J Qual Clin Pract 2001; 21(1-2): 2-7