Systematic review of nerve block and incisional local anaesthetics for analgesia in herniorrhaphy

Background

• PROSPECT is an international collaboration of surgeons and anaesthetists that provides evidence-based recommendations for procedure-specific postoperative pain management.

• Local anaesthetic (LA) injection before or during hernia surgery is commonly used in an attempt to provide postoperative pain relief.

• However, in clinical practice a variety of different protocols are used for administration of local anaesthetic; the technique is not standardised and studies describe different injection sites and timings of administration. Thus there is a need to assess how this technique can be used most effectively.

• PROSPECT has examined the evidence to address the following questions:
 - Does local anaesthetic injection, before or during hernia surgery, reduce postoperative pain?
 - What is the optimum timing of local anaesthetic injection in hernia repair to provide the greatest analgesic benefit?

Methods

• A systematic review of the literature was performed according to the protocol of the Cochrane collaboration. MEDLINE and EmbASE were searched from 1966-January 2004 using predefined search terms.

• Studies included in the review were randomised trials in adult herniorrhaphy, in which LA injection techniques (inguinal nerve block, field block and/or wound infiltration) were compared with placebo, or in which pre- and postincisional and postoperative administration of LA injection techniques were compared.

• All included studies were required to report pain scores using a visual analogue scale (VAS) or verbal rating scale (VRS). All pain scores were converted to VAS 1–100 mm.

• Where possible, meta-analyses were conducted on mean differences in postoperative VAS scores, grouped by time postoperatively. The majority of studies showing a significant benefit extended the time to first analgesic request compared with placebo.

Results

• A total of fifteen studies were identified, of which twelve compared LA injection techniques with placebo, and three assessed pre- versus postincisional LA injection.

• Placebo-controlled studies were grouped for analysis according to time of administration and then stratified further by the LA injection technique used.

Time of administration:

• Seven studies1-7 compared preincisional LA techniques with placebo (Figure 1), and five studies8-12 compared intraoperative LA techniques with placebo (Figure 2). For both pre- and postincisional LA injections, all studies showed a significant reduction in pain scores, measured at different times postoperatively. The majority of studies also reported a significant analgesic benefit compared with placebo in the surgical field.

LA injection technique used:

• Studies used different LA injection protocols and described the techniques in different ways. PROSPECT has defined the three main LA techniques in Table 1.

LA injection techniques used:

• Studies used different LA injection protocols and described the techniques in different ways. PROSPECT has defined the three main LA techniques in Table 1.

Table 1. PROSPECT definitions of LA injection techniques (studies combined all techniques unless otherwise specified).

<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inguinal nerve block</td>
<td>Injection of local anaesthetic into the ilioinguinal/nerve</td>
</tr>
<tr>
<td>Field block</td>
<td>Injection into the superficial and deeper structures in the field of surgery (which may result in a block of the ilioinguinal nerve)</td>
</tr>
<tr>
<td>Wound infiltration</td>
<td>Injection of local anaesthetic into the subcutaneous/deepest structures of the surgical field</td>
</tr>
</tbody>
</table>

Pre-incisional LA injection versus placebo (n=7, 9 arms)

• All seven studies showed that preincisional LA significantly reduced postoperative pain scores at different times compared with placebo:
 - reduced pain scores at rest during 0–6 h postoperatively (n=7)10–12 h (n=2) (Figure 1), quantitative analysis showed a significant reduction in pain scores at rest at 3 h (two studies)8,11–13 (Figure 3), reduced pain scores on moving at 3–6 h, but not 10–24 h10 (two studies)10–12 (Figure 3)
 - five of seven studies showed that preincisional LA significantly reduced supplementary analgesic consumption compared with placebo.8,11,12,13,14 Studies assessed different analgesic parameters and, where available, mean values are shown on Figure 4

Pre-intracorporeal LA injection versus placebo (n=7, 9 arms)

• All seven studies showed that intracorporeal LA injection significantly reduced pain scores compared with placebo: (n=7)10–12 h (n=2) (Figure 1) and pain scores on lying and sitting and walking for 0 h–10 days (n=1) and at 24 and 48 h (n=1)7,12 (Figure 3). Quantitative analysis showed a significant reduction in pain scores at rest at 3 h (two studies)8,11–13 (Figure 3) and at 24 and 48 h (n=1)

Pre-intracorporeal LA injection versus placebo (n=7, 9 arms)

• All seven studies showed that intracorporeal LA significantly reduced postoperative pain scores at different times compared with placebo:
 - reduced pain scores at rest during 0–6 h postoperatively (n=7)10–12 h (n=2) (Figure 1), quantitative analysis showed a significant reduction in pain scores at rest at 3 h (two studies)8,11–13 (Figure 3), reduced pain scores on moving at 3–6 h, but not 10–24 h10 (two studies)10–12 (Figure 3)

Intraoperative LA injection versus placebo (n=2, 2 arms)

• Both studies showed that intracorporeal LA injection significantly reduced pain scores compared with placebo: (n=2)10–12 h (n=1) and pain scores on lying and sitting and walking for 0 h–10 days (n=1), in this study LA was administered pre-, intra- and postoperatively10.

Intraoperative LA injection versus placebo (n=2, 2 arms)

• Both studies showed that intracorporeal LA significantly reduced supplementary analgesic use.

• One study reported that intracorporeal LA significantly extended the time to first analgesic request.

Intraoperative LA injection with no targeted nerve block versus placebo (n=3, 5 arms)

• All three studies showed that intraoperative LA was of superior analgesic benefit compared with placebo:
 - reduction in pain scores at 1–3 h postoperatively (n=3)10–12 h (n=1), but not at 6–12 h (n=2) (n=2)8
 - 8 h (n=1) or at 10 days (n=1)12
 - reduction in pain scores on movement at 4 and 6 h (n=3)10,11 and at 24 and 48 h (n=1)7
 - two studies showed a reduction in supplementary analgesic use (n=2)8,11

• Three studies showed an increase in the time to first analgesic request (n=3)10–12

Pre-incisional versus postincisional LA injection

• Three studies compared preincisional administration with postincisional administration of LA injection techniques: preincisional and postincisional LA were of similar analgesic benefit: pain scores (n=3)10–12 and supplementary analgesic use (n=2)8,11 were not significantly different between groups, except in one study that showed a significant reduction in the proportion of patients requiring supplementary analgesics for preincisional compared with postincisional LA.

Figure 1. Number of studies showing a significant reduction in VAS pain scores at rest: preincisional LA injection versus placebo.

Figure 2. Number of studies showing a significant reduction in VAS pain scores at rest: intracorporeal LA injection versus placebo.

Figure 3. Number of studies showing a significant reduction in VAS pain scores at rest: intracorporeal LA injection versus placebo.

Figure 4. Preincisional LA injection versus wound infiltration: VAS pain scores at rest: n=3 (1, 1).